Adversarial Deep Structured Nets for Mass Segmentation from Mammograms
نویسندگان
چکیده
Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than stateof-the-art approaches. 1
منابع مشابه
Bitewing Radiography Semantic Segmentation Base on Conditional Generative Adversarial Nets
Bitewing Radiography Semantic Segmentation Base on Conditional Generative Adversarial Nets JiangYun;TanNing;ZhangHai;PengTingting 【Abstract】 Currently, Segmentation of bitewing radiograpy images is a very challenging task. The focus of the study is to segment it into caries, enamel, dentin, pulp, crowns, restoration and root canal treatments. The main method of semantic segmentation of bitewing...
متن کاملDeep Learning and Structured Prediction for the Segmentation of Mass in Mammograms
In this paper, we explore the use of deep convolution and deep belief networks as potential functions in structured prediction models for the segmentation of breast masses from mammograms. In particular, the structured prediction models are estimated with loss minimization parameter learning algorithms, representing: a) conditional random field (CRF), and b) structured support vector machine (S...
متن کاملA deep learning approach for the analysis of masses in mammograms with minimal user intervention
We present an integrated methodology for detecting, segmenting and classifying breast masses from mammograms with minimal user intervention. This is a long standing problem due to low signal-to-noise ratio in the visualisation of breast masses, combined with their large variability in terms of shape, size, appearance and location. We break the problem down into three stages: mass detection, mas...
متن کاملThe Automated Learning of Deep Features for Breast Mass Classification from Mammograms
The classification of breast masses from mammograms into benign or malignant has been commonly addressed with machine learning classifiers that use as input a large set of hand-crafted features, usually based on general geometrical and texture information. In this paper, we propose a novel deep learning method that automatically learns features based directly on the optmisation of breast mass c...
متن کاملOn the Robustness of Semantic Segmentation Models to Adversarial Attacks
Deep Neural Networks (DNNs) have been demonstrated to perform exceptionally well on most recognition tasks such as image classification and segmentation. However, they have also been shown to be vulnerable to adversarial examples. This phenomenon has recently attracted a lot of attention but it has not been extensively studied on multiple, large-scale datasets and complex tasks such as semantic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.09288 شماره
صفحات -
تاریخ انتشار 2017